Reaction Characteristics of Two Types of Shale with Supercritical CO2 and Its Potential Impact on Flow-Back Strategies

Author:

Yan WeiORCID,Leng GuangyaoORCID,Li Wenbo,Wu Tao,Safarov Mustajab,Ndessabeka Jean P. E. Amboulou,Meng Keyu

Abstract

Supercritical carbon dioxide (SC-CO2) fracturing has been used in developing low permeability and water-sensitive reservoirs in recent years, which is expected to become a new generation of unconventional reservoir fracturing fluid. However, the water-rock interaction characteristics of various lithology shales under SC-CO2 circumstance and its influence on fracturing effect still need to be investigated. Two kinds of shale samples from C7 and S1 formations of the Ordos Basin were treated by SC-CO2 with formation water. The aims of the research are to determine the processes taking place in shale reservoir when considering minerals components transformation, porosity/permeability variation, and micro pore-structure change during the SC-CO2 fracturing. Static and dynamic SC-CO2 immersed experiments were conducted and the scanning of electron microscopy (SEM) and X-ray diffraction (XRD) was employed to analyze the surface morphology and newly formed minerals. Helium porosimeter, the ultralow permeability meter, and the CT scanner are employed to record the alternation of physical parameters during SC-CO2 dynamic injection. The experimental results show that the C7 samples are rich of chlorite and easily reacting with SC-CO2 saturated formation water to form new minerals, but the S1 samples are insensitive to aqueous SC-CO2. The minimum value of permeability and porosity of the C7 cores appear at 24h in the long-interval experiment, but in the short-interval dynamic experiment, the minimum values move ahead to 12h. The optimal flowback time for the C7 reservoir is before 12 h or after 24 h. The high-pressure SC-CO2 flooding pushes the new forming minerals particles to migrate to the outlet side and block the pore throat. For the S1 core results, the porosity and permeability change little in both short and long interval experiments. There is no strict flow-back time requirement for S1 reservoir during SC-CO2 fracturing. This study is significance for the efficient application of SC-CO2 in the exploitation of shale oil reservoirs.

Funder

National Natural Science Foundation Project

Open Research Fund Program of Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring (Central South University), Ministry of Education

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3