Ore Processing Technologies Applied to Industrial Waste Decontamination: A Case Study

Author:

Anticoi HernanORCID,Moncunill Josep OlivaORCID,Sampaio Carlos HoffmanORCID,Pérez-Álvarez RubénORCID,Malagón-Picón Beatriz

Abstract

The correct management of industrial waste, as well as being an environmental obligation, can also be used as an opportunity to reduce costs in terms of energy and raw material consumption. A large amount of waste sand is generated in foundries with a high content of pollutants adhering to its surface structure. In this study, the material utilized consists of a silicic sand that comes from a casting process, with a thin layer of fixed carbon on the surface of the particles. The objective is to remove this contaminant, in order to have clean sands for use in alternative processes, such as in glass raw material, green concrete, or in the recirculation of these in the same process. The mechanical action that is best for eliminating surface attached contaminants is abrasion. In this regard, two specific devices, commonly used in ore processing operations, were utilized to apply energy in a material in order to reach abrasion by attrition, but with different kinetic approaches: stirring in a slurry media and using a light milling, in both cases reducing the grinding media in order to avoid material fracture. The test performance evaluation is mainly focused on the decontamination efficiency, the sand mass recovery ratio, and the energy consumption. The results show that in all cases, liberation is reachable in different levels at different residence times. We were able to decrease the LOI content from 4% to less than 1%, combined with a near 85% recovery rate of clean sand in the case of stirring. In the case of light milling, the results are even better: the final product reached near 0.5% of LOI content, despite mass flow recovery potentially being less than 80%. Finally, we discuss whether energy consumption is the factor which decides the best alternative. The energy consumed ratio when comparing light milling with stirring is near 9:1, which is a significant amount when taking into account the importance of reducing energy consumption in today’s industry due to its economic and environmental impact.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3