Image Feature Matching Based on Semantic Fusion Description and Spatial Consistency

Author:

Zhang WeiORCID,Zhang Guoying

Abstract

Image feature description and matching is widely used in computer vision, such as camera pose estimation. Traditional feature descriptions lack the semantic and spatial information, and give rise to a large number of feature mismatches. In order to improve the accuracy of image feature matching, a feature description and matching method, based on local semantic information fusion and feature spatial consistency, is proposed in this paper. Once object detection is used on images, feature points are then extracted, and image patches with various sizes surrounding these points are clipped. These patches are sent into the Siamese convolution network to get their semantic vectors. Then, semantic fusion description of feature points is obtained by weighted sum of the semantic vectors, and their weights optimized by particle swarm optimization (PSO) algorithm. When matching these feature points using their descriptions, feature spatial consistency is calculated based on the spatial consistency of matched objects, and the orientation and distance constraint of adjacent points within matched objects. With the description and matching method, the feature points are matched accurately and effectively. Our experiment results showed the efficiency of our methods.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Visual-Semantic Interactive Carcass Spine Interface Segmentation Method;2022 International Conference on Intelligent Manufacturing and Industrial Big Data (ICIMIBD);2022-12-09

2. Degraded Image Enhancement Using Dual-Domain-Adaptive Wavelet and Improved Fuzzy Transform;Mathematical Problems in Engineering;2021-03-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3