Degraded Image Enhancement Using Dual-Domain-Adaptive Wavelet and Improved Fuzzy Transform

Author:

Fan Weiqiang1ORCID,Huo Yuehua2ORCID,Li Xiaoyu1

Affiliation:

1. School of Mechanical Electronic and Information Engineering, China University of Mining and Technology, Beijing 100083, China

2. Network and Information Center, China University of Mining and Technology, Beijing 100083, China

Abstract

A novel enhancement algorithm for degraded image using dual-domain-adaptive wavelet and improved fuzzy transform is proposed, aiming at the problem of surveillance videos degradation caused by the complex lighting conditions underground coal mine. Firstly, the dual-domain filtering (DDF) is used to decompose the image into base image and detail image, and the contrast limited adaptive histogram enhancement (CLAHE) is adopted to adjust the overall brightness and contrast of the base image. Then, the discrete wavelet transform (DWT) is utilized to obtain the low frequency sub-band (LFS) and high frequency sub-band (HFS). Next, the wavelet shrinkage threshold is applied to calculate the wavelet threshold corresponding to the HFS at different scales. Meanwhile, a new Garrate threshold function that introduces adjustment factor and enhancement coefficient is designed to adaptively de-noise and enhance the HFS coefficients, and the Gamma function is employed to correct the LFS coefficients. Finally, the PAL fuzzy enhancement operator is improved and used to perform contrast enhancement and highlight area suppression on the reconstructed image to obtain an enhanced image. Experimental results show that the proposed algorithm can not only significantly improve the overall brightness and contrast of the degraded image but also suppresses the noise of dust and spray and enhances the image details. Compared with the similar algorithms of STFE, GTFE, CLAHE, SSR, MSR, DGR, and MSWT algorithms, the indicator values of comprehensive performance of the proposed algorithm are increased by 205%, 195%, 200%, 185%, 185%, 85%, 140%, and 215%, respectively. Moreover, compared with the other seven algorithms, the proposed algorithm has strong robustness and is more suitable for image enhancement in different mine environments.

Funder

National Key Research & Development Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference37 articles.

1. Technologies of monitoring and communication in the coal mine;J. P. Sun;Journal of China Coal Society,2010

2. Coal mine intellectualization: the core technology of high quality development;G. F. Wang;Journal of China Coal Society,2019

3. Machine vision recognition method and optimization for intelligent separation of coal and gangue;Z. Q. Xu;Journal of China Coal Society,2020

4. Method of tracking and positioning for mobile target based on ORB features and binocular vision in mine;F. Zhang;Journal of China Coal Society,2018

5. Image Feature Matching Based on Semantic Fusion Description and Spatial Consistency

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3