MSPV3D: Multi-Scale Point-Voxels 3D Object Detection Net

Author:

Zhang Zheng1,Bao Zhiping1,Wei Yun2,Zhou Yongsheng3ORCID,Li Ming2,Tian Qing1

Affiliation:

1. School of Information, North China University of Technology, Beijing 100144, China

2. Corporation of Information, Beijing Mass Transit Railway Operation Co., Ltd., Beijing 100044, China

3. School of Information, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

Autonomous vehicle technology is advancing, with 3D object detection based on point clouds being crucial. However, point clouds’ irregularity, sparsity, and large data volume, coupled with irrelevant background points, hinder detection accuracy. We propose a two-stage multi-scale 3D object detection network. Firstly, considering that a large number of useless background points are usually generated by the ground during detection, we propose a new ground filtering algorithm to increase the proportion of foreground points and enhance the accuracy and efficiency of the two-stage detection. Secondly, given that different types of targets to be detected vary in size, and the use of a single-scale voxelization may result in excessive loss of detailed information, the voxels of different scales are introduced to extract relevant features of objects of different scales in the point clouds and integrate them into the second-stage detection. Lastly, a multi-scale feature fusion module is proposed, which simultaneously enhances and integrates features extracted from voxels of different scales. This module fully utilizes the valuable information present in the point cloud across various scales, ultimately leading to more precise 3D object detection. The experiment is conducted on the KITTI dataset and the nuScenes dataset. Compared with our baseline, “Pedestrian” detection improved by 3.37–2.72% and “Cyclist” detection by 3.79–1.32% across difficulty levels on KITTI, and was boosted by 2.4% in NDS and 3.6% in mAP on nuScenes.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3