Assessment of the Effects of Genotype, Location, and Planting Season on the Nutritional Composition and the Metabolizable Energy of Advanced Twenty-Five Maize Hybrids

Author:

Alamu Emmanuel OladejiORCID,Menkir AbebeORCID,Adesokan Michael,Fawole SegunORCID,Maziya-Dixon Busie

Abstract

This study investigated the effects of genotype, location, and planting season on the proximate composition and metabolizable energy of advanced maize hybrids. Twenty-five hybrid maize and a local variety as control were harvested from five locations 100 days after planting for two seasons. The maize samples were sorted, cleaned, and pulverized using a laboratory mill and were analyzed for nutritional composition and metabolizable energy (ME) using standard laboratory methods. Moisture content, ash, fat, and protein had mean ± SD of 8.97 ± 0.40%, 1.48 ± 0.05%, 4.31 ± 0.19, and 8.88 ± 0.18%, respectively. ME had a mean ± SD of 379.77 ± 2.17 kJ, and total carbohydrates had values ranging from 74.68 and 77.20%, with an average of 76.68%. Results showed that most of the variations expressed in the proximate compositions of the maize hybrids were not significantly (p > 0.05) dependent on the genotypes. In contrast, locations significantly affected the maize hybrids’ proximate composition and metabolizable energy (p < 0.001). In addition, there was no significant effect (p > 0.05) of location by genotype interaction on the proximate composition and ME of the maize samples. The planting season also exhibited a significant (p < 0.001) difference for all the proximate parameters. Fourteen out of the twenty-five maize hybrids were similar to the local variety in terms of proximate composition and metabolizable energy. Therefore, they could be recommended for advancement in the breeding stages for release for household and industrial uses.

Funder

Bill & Melinda Gates Foundation

Publisher

MDPI AG

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3