Intercalation Effects on the Dielectric Properties of PVDF/Ti3C2Tx MXene Nanocomposites

Author:

Tsyganov Alexey1ORCID,Vikulova Maria1ORCID,Artyukhov Denis2ORCID,Zheleznov Denis1,Gorokhovsky Alexander1ORCID,Gorshkov Nikolay1ORCID

Affiliation:

1. Department of Chemistry and Technology of Materials, Yuri Gagarin State Technical University of Saratov, 77 Polytecnicheskaya Street, 410054 Saratov, Russia

2. Department of Power and Electrical Engineering, Yuri Gagarin State Technical University of Saratov, 77 Polytecnicheskaya Street, 410054 Saratov, Russia

Abstract

In this study, we report the effect of intercalation of dimethyl sulfoxide (DMSO) and urea molecules into the interlayer space of Ti3C2Tx MXene on the dielectric properties of poly(vinylidene fluoride) (PVDF)/MXene polymer nanocomposites. MXenes were obtained by a simple hydrothermal method using Ti3AlC2 and a mixture of HCl and KF, and they were then intercalated with DMSO and urea molecules to improve the exfoliation of the layers. Then, nanocomposites based on a PVDF matrix loading of 5–30 wt.% MXene were fabricated by hot pressing. The powders and nanocomposites obtained were characterized by using XRD, FTIR, and SEM. The dielectric properties of the nanocomposites were studied by impedance spectroscopy in the frequency range of 102–106 Hz. As a result, the intercalation of MXene with urea molecules made it possible to increase the permittivity from 22 to 27 and to slightly decrease the dielectric loss tangent at a filler loading of 25 wt.% and a frequency of 1 kHz. The intercalation of MXene with DMSO molecules made it possible to achieve an increase in the permittivity up to 30 at a MXene loading of 25 wt.%, but the dielectric loss tangent was increased to 0.11. A discussion of the possible mechanisms of MXene intercalation influence on the dielectric properties of PVDF/Ti3C2Tx MXene nanocomposites is presented.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3