Multiple Linear Regression Models for Predicting Nonpoint-Source Pollutant Discharge from a Highland Agricultural Region

Author:

Cho Jae,Lee Jong

Abstract

Sediment runoff from dense highland field areas greatly affects the quality of downstream lakes and drinking water sources. In this study, multiple linear regression (MLR) models were built to predict diffuse pollutant discharge using the environmental parameters of a basin. Explanatory variables that influence the sediment and pollutant discharge can be identified with the model, and such research could play an important role in limiting sediment erosion in the dense highland field area. Pollutant load per event, event mean concentration (EMC), and pollutant load per area were estimated from stormwater survey data from the Lake Soyang basin. During the wet season, heavy rains cause large amounts of suspended sediment and the occurrence of such rains is increasing due to climate change. The explanatory variables used in the MLR models are the percentage of fields, subbasin area, and mean slope of subbasin as topographic parameters, and the number of preceding dry days, rainfall intensity, rainfall depth, and rainfall duration as rainfall parameters. In the MLR modeling process, four types of regression equations with and without log transformation of the explanatory and response variables were examined to identify the best performing regression model. The performance of the MLR models was evaluated using the coefficient of determination (R2), root mean square error (RMSE), coefficient of variation of the root mean square error (CV(RMSE)), the ratio of the RMSE to the standard deviation of the observed data (RSR) and the Nash–Sutcliffe model efficiency (NSE). The performance of the MLR models of pollutant load except total nitrogen (TN) was good under the condition of RSR, and satisfactory for the NSE and R2. In the EMC and load/area models, the performance for suspended solids (SS) and total phosphorus (TP) was good for the RSR, and satisfactory for the NSE and R2. The standardized coefficients for the models were analyzed to identify the influential explanatory variables in the models. In the final performance evaluation, the results of jackknife validation indicate that the MLR models are robust.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3