A Concentration Prediction-Based Crop Digital Twin Using Nutrient Co-Existence and Composition in Regression Algorithms

Author:

Ghazvini Anahita1,Sharef Nurfadhlina Mohd12ORCID,Balasundram Siva Kumar3ORCID,Lee Lai Soon4ORCID

Affiliation:

1. Intelligent Computing Research Group, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang 43400, Malaysia

2. Institute of Mathematical Research, Universiti Putra Malaysia, Serdang 43400, Malaysia

3. Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia

4. Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Malaysia

Abstract

Crop digital twin is redefining traditional farming practices, offering unprecedented opportunities for real-time monitoring, predictive and simulation analysis, and optimization. This research embarks on an exploration of the synergy between precision agriculture, crop modeling, and regression algorithms to create a digital twin for farmers to augment the concentration and composition prediction-based crop nutrient recovery. This captures the holistic representation of crop characteristics, considering the intricate relationships between environmental factors, nutrient concentrations, and crop compositions. However, the complexity arising from diverse soil and environmental conditions makes nutrient content analysis expensive and time-consuming. This paper presents two approaches, namely, (i) single-nutrient concentration prediction and (ii) nutrient composition concentration prediction, which is the result of a predictive digital twin case study that employs six regression algorithms, namely, Elastic Net, Polynomial, Stepwise, Ridge, Lasso, and Linear Regression, to predict rice nutrient content efficiently, particularly considering the coexistence and composition of multiple nutrients. Our research findings highlight the superiority of the Polynomial Regression model in predicting nutrient content, with a specific focus on accurate nitrogen percentage prediction. This insight can be used for nutrient recovery intervention by knowing the precise amount of nutrient to be added into the crop medium. The adoption of the Polynomial Regression model offers a valuable tool for nutrient management practices in the crop digital twin, potentially resulting in higher-quality rice production and a reduced environmental impact. The proposed method can be replicable in other low-resourced crop digital twin system.

Funder

Universiti Putra Malaysia

United States Air Force Office of Scientific Research

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3