KRT-FUAP: Key Regions Tuned via Flow Field for Facial Universal Adversarial Perturbation

Author:

Jin Xi1,Liu Yong1,Sun Guangling1ORCID,Chen Yanli2,Dong Zhicheng3ORCID,Wu Hanzhou1ORCID

Affiliation:

1. School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China

2. School of Big Data and Computer Science, Guizhou Normal University, Guiyang 550025, China

3. School of Information Science and Technology, Tibet University, Lhasa 850000, China

Abstract

It has been established that convolutional neural networks are susceptible to elaborate tiny universal adversarial perturbations (UAPs) in natural image classification tasks. However, UAP attacks against face recognition systems have not been fully explored. This paper proposes a spatial perturbation method that generates UAPs with local stealthiness by learning variable flow field to fine-tune facial key regions (KRT-FUAP). We ensure that the generated adversarial perturbations are positioned within reasonable regions of the face by designing a mask specifically tailored to facial key regions. In addition, we pay special attention to improving the effectiveness of the attack while maintaining the stealthiness of the perturbation and achieve the dual optimization of aggressiveness and stealthiness by accurately controlling the balance between adversarial loss and stealthiness loss. Experiments conducted on the frameworks of IResNet50 and MobileFaceNet demonstrate that our proposed method achieves an attack performance comparable to existing natural image universal attack methods, but with significantly improved stealthiness.

Funder

Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3