Comparing Vision Transformers and Convolutional Neural Networks for Image Classification: A Literature Review

Author:

Maurício José1ORCID,Domingues Inês1ORCID,Bernardino Jorge1ORCID

Affiliation:

1. Polytechnic of Coimbra, Coimbra Institute of Engineering (ISEC), Rua Pedro Nunes, 3030-199 Coimbra, Portugal

Abstract

Transformers are models that implement a mechanism of self-attention, individually weighting the importance of each part of the input data. Their use in image classification tasks is still somewhat limited since researchers have so far chosen Convolutional Neural Networks for image classification and transformers were more targeted to Natural Language Processing (NLP) tasks. Therefore, this paper presents a literature review that shows the differences between Vision Transformers (ViT) and Convolutional Neural Networks. The state of the art that used the two architectures for image classification was reviewed and an attempt was made to understand what factors may influence the performance of the two deep learning architectures based on the datasets used, image size, number of target classes (for the classification problems), hardware, and evaluated architectures and top results. The objective of this work is to identify which of the architectures is the best for image classification and under what conditions. This paper also describes the importance of the Multi-Head Attention mechanism for improving the performance of ViT in image classification.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

1. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., and Gelly, S. (2020). An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv.

2. Saha, S. (2023, January 08). A Comprehensive Guide to Convolutional Neural Networks—The ELI5 Way. Available online: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

3. Literature Review as a Research Methodology: An Overview and Guidelines;Snyder;J. Bus. Res.,2019

4. Software Defect Prediction Using Ensemble Learning: A Systematic Literature Review;Matloob;IEEE Access,2021

5. Benz, P., Ham, S., Zhang, C., Karjauv, A., and Kweon, I.S. (2021). Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3