Abstract
Individual glycemic responses following dietary intake result from complex physiological processes, and can be influenced by physical properties of foods, such as increased resistant starch (RS) from starch retrogradation. Predictive equations are needed to provide personalized dietary recommendations to reduce chronic disease development. Therefore, a precision nutrition model predicting the postprandial glucose response (PPGR) in overweight women following the consumption of potatoes was formulated. Thirty overweight women participated in this randomized crossover trial. Participants consumed 250 g of hot (9.2 g RS) or cold (13.7 g RS) potatoes on two separate occasions. Baseline characteristics included demographics, 10-day dietary records, body composition, and the relative abundance (RA) and α-diversity of gut microbiota. Elastic net regression using 5-fold cross-validation predicted PPGR after potato intake. Most participants (70%) had a favorable PPGR to the cold potato. The model explained 32.2% of the variance in PPGR with the equation: 547.65 × (0 [if cold, high-RS potato], ×1, if hot, low-RS potato]) + (BMI [kg/m2] × 40.66)—(insoluble fiber [g] × 49.35) + (Bacteroides [RA] × 8.69)—(Faecalibacterium [RA] × 73.49)—(Parabacteroides [RA] × 42.08) + (α-diversity × 110.87) + 292.52. This model improves the understanding of baseline characteristics that explain interpersonal variation in PPGR following potato intake and offers a tool to optimize dietary recommendations for a commonly consumed food.
Subject
Food Science,Nutrition and Dietetics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献