Neural Network Based Approach to Recognition of Meteor Tracks in the Mini-EUSO Telescope Data

Author:

Zotov Mikhail1ORCID,Anzhiganov Dmitry12,Kryazhenkov Aleksandr12,Barghini Dario345,Battisti Matteo3ORCID,Belov Alexander16ORCID,Bertaina Mario34ORCID,Bianciotto Marta4ORCID,Bisconti Francesca37,Blaksley Carl8,Blin Sylvie9,Cambiè Giorgio710,Capel Francesca1112,Casolino Marco7810ORCID,Ebisuzaki Toshikazu8,Eser Johannes13ORCID,Fenu Francesco4,Franceschi Massimo14,Golzio Alessio34ORCID,Gorodetzky Philippe9,Kajino Fumiyoshi15,Kasuga Hiroshi8,Klimov Pavel16ORCID,Manfrin Massimiliano34,Marcelli Laura7ORCID,Miyamoto Hiroko3,Murashov Alexey16,Napolitano Tommaso14,Ohmori Hiroshi8,Olinto Angela13,Parizot Etienne916,Picozza Piergiorgio710,Piotrowski Lech17,Plebaniak Zbigniew3418,Prévôt Guillaume9,Reali Enzo710ORCID,Ricci Marco14,Romoli Giulia710,Sakaki Naoto8,Shinozaki Kenji18,De La Taille Christophe19,Takizawa Yoshiyuki8,Vrábel Michal18,Wiencke Lawrence20

Affiliation:

1. Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia

2. Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow 119991, Russia

3. INFN, Sezione di Torino, Via Pietro Giuria, 1, 10125 Torino, Italy

4. Dipartimento di Fisica, Università di Torino, Via Pietro Giuria, 1, 10125 Torino, Italy

5. INAF, Osservatorio Astrofisico di Torino, Via Osservatorio 20, Pino Torinese, 10025 Torino, Italy

6. Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow 119991, Russia

7. INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy

8. RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

9. AstroParticule et Cosmologie, CNRS, Université Paris Cité, F-75013 Paris, France

10. Dipartimento di Fisica, Universita degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy

11. Max Planck Institute for Physics, Föhringer Ring 6, D-80805 Munich, Germany

12. Department of Particle and Astroparticle Physics, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden

13. Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637, USA

14. INFN—Laboratori Nazionali di Frascati, 00044 Frascati, Italy

15. Department of Physics, Konan University, Kobe 658-8501, Japan

16. AstroParticule et Cosmologie, Institut Universitaire de France (IUF), CEDEX 05, 75231 Paris, France

17. Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland

18. National Centre for Nuclear Research, Ul. Pasteura 7, PL-02-093 Warsaw, Poland

19. Omega, Ecole Polytechnique, CNRS/IN2P3, 91128 Palaiseau, France

20. Department of Physics, Colorado School of Mines, Golden, CO 80401, USA

Abstract

Mini-EUSO is a wide-angle fluorescence telescope that registers ultraviolet (UV) radiation in the nocturnal atmosphere of Earth from the International Space Station. Meteors are among multiple phenomena that manifest themselves not only in the visible range but also in the UV. We present two simple artificial neural networks that allow for recognizing meteor signals in the Mini-EUSO data with high accuracy in terms of a binary classification problem. We expect that similar architectures can be effectively used for signal recognition in other fluorescence telescopes, regardless of the nature of the signal. Due to their simplicity, the networks can be implemented in onboard electronics of future orbital or balloon experiments.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference35 articles.

1. The JEM-EUSO instrument;Adams;Exp. Astron.,2015

2. The JEM-EUSO mission: An introduction;Adams;Exp. Astron.,2015

3. Bertaina, M.E. (2021, January 15–22). An overview of the JEM-EUSO program and results. Proceedings of the 37th International Cosmic Ray Conference—PoS(ICRC2021), Berlin, Germany.

4. Benson, R., and Linsley, J. (1981, January 13–25). Satellite observation of cosmic ray air showers. Proceedings of the 17th International Cosmic Ray Conference, Paris, France.

5. Science of atmospheric phenomena with JEM-EUSO;Adams;Exp. Astron.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pedestrian Detection Based on Feature Enhancement in Complex Scenes;Algorithms;2024-01-18

2. Refined STACK-CNN for Meteor and Space Debris Detection in Highly Variable Backgrounds;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3