Pedestrian Detection Based on Feature Enhancement in Complex Scenes

Author:

Su Jiao1,An Yi12ORCID,Wu Jialin2,Zhang Kai1

Affiliation:

1. School of Electrical Engineering, Xinjiang University, Urumqi 830000, China

2. School of Control Science and Engineering, Dalian University of Technology, Dalian 116023, China

Abstract

Pedestrian detection has always been a difficult and hot spot in computer vision research. At the same time, pedestrian detection technology plays an important role in many applications, such as intelligent transportation and security monitoring. In complex scenes, pedestrian detection often faces some challenges, such as low detection accuracy and misdetection due to small target sizes and scale variations. To solve these problems, this paper proposes a pedestrian detection network PT-YOLO based on the YOLOv5. The pedestrian detection network PT-YOLO consists of the YOLOv5 network, the squeeze-and-excitation module (SE), the weighted bi-directional feature pyramid module (BiFPN), the coordinate convolution (coordconv) module and the wise intersection over union loss function (WIoU). The SE module in the backbone allows it to focus on the important features of pedestrians and improves accuracy. The weighted BiFPN module enhances the fusion of multi-scale pedestrian features and information transfer, which can improve fusion efficiency. The prediction head design uses the WIoU loss function to reduce the regression error. The coordconv module allows the network to better perceive the location information in the feature map. The experimental results show that the pedestrian detection network PT-YOLO is more accurate compared with other target detection methods in pedestrian detection and can effectively accomplish the task of pedestrian detection in complex scenes.

Funder

National Natural Science Foundation

Natural Science Foundation of Liaoning Province

the Science and Technology Major Project of Shanxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3