Dynamic Network Resource Autonomy Management and Task Scheduling Method

Author:

Li Xiuhong1,Yang Jiale1,Fan Huilong2ORCID

Affiliation:

1. College of Information Science and Engineering (School of Cyber Science and Engineering), XinJiang University, Urmuqi 830046, China

2. School of Computer Science and Engineering, Central South University, Changsha 410075, China

Abstract

Satellite network resource management and scheduling technology are significant to constructing integrated information networks in heaven and earth. The difficulty in realizing this technology lies in improving resource utilization efficiency while ensuring the service quality of satellites and efficiently coordinating complex satellite network systems and services. This paper proposes a model, A Dynamic task scheduling method based on a UNified resource Management architecture(DUNM), based on the designed resource management architecture supported by dynamic scheduling algorithms to address the problems of low resource utilization, resource allocation, and task completion rate. First, with sufficient resources, the task execution time to complete a task is calculated based on the number of resources, task transmission time, task waiting time, etc. Secondly, based on the tasks assigned to satellites, the execution time of all functions with different transmission rates of communication links between satellites is calculated, and the total sum of all time consumption is analyzed. Finally, after simulation experiments and comparison with various baseline algorithms, about a 40% reduction in time to complete scheduled tasks and an almost 25% reduction in the average cost to finish a scheduling task, our method has higher scheduling efficiency and lower task completion revenue. It also guarantees a higher task completion rate while completing the tasks. Our approach attained a nearly 100% completion rate for scheduling tasks, which means that our algorithm can achieve the scheduling tasks faster and at high task revenue, thus improving the efficiency and economic efficiency of the whole system. Therefore, it validates the advantages of our method, such as high efficiency and high revenue.

Funder

Xinjiang Natural Science Foundation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3