Dynamic Merging for Optimal Onboard Resource Utilization: Innovating Mission Queue Constructing Method in Multi-Satellite Spatial Information Networks

Author:

Long Jun1234,Wang Shangpeng12ORCID,Huo Yakun12,Liu Limin124,Fan Huilong12ORCID

Affiliation:

1. School of Computer Science and Engineering, Central South University, Changsha 410075, China

2. Network Resource Management and Trust Evaluation Key Laboratory of Hunan, Changsha 410075, China

3. Big Data Institute, Central South University, Changsha 410075, China

4. Joint Laboratory of Space Information System, Changsha 410075, China

Abstract

The purpose of constructing onboard observation mission queues is to improve the execution efficiency of onboard tasks and reduce energy consumption, representing a significant challenge in achieving efficient global military reconnaissance and target tracking. Existing research often focuses on the aspect of task scheduling, aiming at optimizing the efficiency of single-task execution, while neglecting the complex dependencies that might exist between multiple tasks and payloads. Moreover, traditional task scheduling schemes are no longer suitable for large-scale tasks. To effectively reduce the number of tasks within the network, we introduce a network aggregation graph model based on multiple satellites and tasks, and propose a task aggregation priority dynamic calculation algorithm based on graph computations. Subsequently, we present a dynamic merging-based method for multi-satellite, multi-task aggregation, a novel approach for constructing onboard mission queues that can dynamically optimize the task queue according to real-time task demands and resource status. Simulation experiments demonstrate that, compared to baseline algorithms, our proposed task aggregation method significantly reduces the task size by approximately 25% and effectively increases the utilization rate of onboard resources.

Funder

National Natural Science Foundation of China

Science and Technology Plan of Hunan

Key Technology R&D Program of Hunan Province

Foundation of Preview of Equipment

Theory and Method of Multi-Satellite Collaborative Application

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3