Microrobot Path Planning Based on the Multi-Module DWA Method in Crossing Dense Obstacle Scenario

Author:

Zeng Dequan12345,Chen Haotian1,Yu Yinquan1,Hu Yiming145,Deng Zhenwen2ORCID,Zhang Peizhi3,Xie Dongfu1

Affiliation:

1. School of Mechanical Electronic and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China

2. Institute of Computer Application Technology, NORINCO Group, Beijing 100089, China

3. School of Automotive Studies, Tongji University, Shanghai 201804, China

4. Jiangxi Tongling Automotive Technology Co. LTD, Nanchang 330052, China

5. Nanchang Automotive Institution of Intelligence & New Energy, Nanchang 330052, China

Abstract

A hard issue in the field of microrobots is path planning in complicated situations with dense obstacle distribution. Although the Dynamic Window Approach (DWA) is a good obstacle avoidance planning algorithm, it struggles to adapt to complex situations and has a low success rate when planning in densely populated obstacle locations. This paper suggests a multi-module enhanced DWA (MEDWA) obstacle avoidance planning algorithm to address the aforementioned issues. An obstacle-dense area judgment approach is initially presented by combining Mahalanobis distance, Frobenius norm, and covariance matrix on the basis of a multi-obstacle coverage model. Second, MEDWA is a hybrid of enhanced DWA (EDWA) algorithms in non-dense areas with a class of two-dimensional analytic vector field methods developed in dense areas. The vector field methods are used instead of the DWA algorithms with poor planning performance in dense areas, which greatly improves the passing ability of microrobots over dense obstacles. The core of EDWA is to extend the new navigation function by modifying the original evaluation function and dynamically adjusting the weights of the trajectory evaluation function in different modules using the improved immune algorithm (IIA), thus improving the adaptability of the algorithm to different scenarios and achieving trajectory optimization. Finally, two scenarios with different obstacle-dense area locations were constructed to test the proposed method 1000 times, and the performance of the algorithm was verified in terms of step number, trajectory length, heading angle deviation, and path deviation. The findings indicate that the method has a smaller planning deviation and that the length of the trajectory and the number of steps can both be reduced by about 15%. This improves the ability of the microrobot to pass through obstacle-dense areas while successfully preventing the phenomenon of microrobots going around or even colliding with obstacles outside of dense areas.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3