Efficient Path Planning for a Microrobot Passing through Environments with Narrow Passages

Author:

Huang Cheng-Ming,Hsu Shu-Hsien

Abstract

This paper presents an efficient path-planning algorithm for microrobots attempting to pass through environments with narrow passages. Because of the extremely small size of a microrobot, it is suitable for work in this kind of environment. The rapidly exploring random tree (RRT) algorithm, which uses random sampling points, can quickly explore an entire environment and generate a sub-optimal path for a robot to pass through it; however, the RRT algorithm, when used to plan a path for a microrobot passing through an environment with narrow passages, has the problem of being easily limited to local solutions when it confronts with a narrow passage and is unable to find the final path through it. In light of this, the objectives of the considered path planning problem involve detecting the narrow passages, leading the path toward an approaching narrow passage, passing through a narrow passage, and extending the path search more efficiently. A methodology was proposed based on the bidirectional RRT in which image processing is used to mark narrow passages and their entrances and exits so that the bidirectional RRT can be quickly guided to them and combined with the deterministic algorithm to find paths through them. We designed the methodology such that RRT generates the sampling points for path growth. The multiple importance sampling technique is incorporated with bidirectional RRT, named MIS-BiRRT, to make the path grow faster toward the target point and narrow passages while avoiding obstacles. The proposed algorithm also considers multiple candidate paths simultaneously to expand the search range and then retain the best one as a part of the planning path. After validation from simulation, the proposed algorithm was found to generate efficient path planning results for microrobots to pass through narrow passages.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3