A Lightweight Method for Detecting IC Wire Bonding Defects in X-ray Images

Author:

Zhan Daohua12,Lin Jian12,Yang Xiuding12,Huang Renbin12,Yi Kunran12,Liu Maoling12,Zheng Hehui12,Xiong Jingang12,Cai Nian13ORCID,Wang Han12ORCID,Qiu Baojun4

Affiliation:

1. State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangzhou 510006, China

2. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China

3. School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China

4. China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 511370, China

Abstract

Integrated circuit (IC) X-ray wire bonding image inspections are crucial for ensuring the quality of packaged products. However, detecting defects in IC chips can be challenging due to the slow defect detection speed and the high energy consumption of the available models. In this paper, we propose a new convolutional neural network (CNN)-based framework for detecting wire bonding defects in IC chip images. This framework incorporates a Spatial Convolution Attention (SCA) module to integrate multi-scale features and assign adaptive weights to each feature source. We also designed a lightweight network, called the Light and Mobile Network (LMNet), using the SCA module to enhance the framework’s practicality in the industry. The experimental results demonstrate that the LMNet achieves a satisfactory balance between performance and consumption. Specifically, the network achieved a mean average precision (mAP50) of 99.2, with 1.5 giga floating-point operations (GFLOPs) and 108.7 frames per second (FPS), in wire bonding defect detection.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Jihua Laboratory Foundation of the Guangdong Province Laboratory of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3