A Physics-Informed Automatic Neural Network Generation Framework for Emerging Device Modeling

Author:

Guo Guangxin1ORCID,You Hailong1ORCID,Li Cong1ORCID,Tang Zhengguang1ORCID,Li Ouwen1ORCID

Affiliation:

1. School of Microelectronics, Xidian University, Xi’an 710071, China

Abstract

With the rapid development of semiconductor technology, traditional equation-based modeling faces challenges in accuracy and development time. To overcome these limitations, neural network (NN)-based modeling methods have been proposed. However, the NN-based compact model encounters two major issues. Firstly, it exhibits unphysical behaviors such as un-smoothness and non-monotonicity, which hinder its practical use. Secondly, finding an appropriate NN structure with high accuracy requires expertise and is time-consuming. In this paper, we propose an Automatic Physical-Informed Neural Network (AutoPINN) generation framework to solve these challenges. The framework consists of two parts: the Physics-Informed Neural Network (PINN) and the two-step Automatic Neural Network (AutoNN). The PINN is introduced to resolve unphysical issues by incorporating physical information. The AutoNN assists the PINN in automatically determining an optimal structure without human involvement. We evaluate the proposed AutoPINN framework on the gate-all-around transistor device. The results demonstrate that AutoPINN achieves an error of less than 0.05%. The generalization of our NN is promising, as validated by the test error and the loss landscape. The results demonstrate smoothness in high-order derivatives, and the monotonicity can be well-preserved. We believe that this work has the potential to accelerate the development and simulation process of emerging devices.

Funder

Xidian University

Beijing Microelectronics Technology Institute

Project of Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory

China National Key R&D Program

111 Project of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3