Machine-Learning-Based Compact Modeling for Sub-3-nm-Node Emerging Transistors

Author:

Woo SangMin,Jeong HyunJoon,Choi JinYoung,Cho HyungMin,Kong Jeong-Taek,Kim SoYoungORCID

Abstract

In this paper, we present an artificial neural network (ANN)-based compact model to evaluate the characteristics of a nanosheet field-effect transistor (NSFET), which has been highlighted as a next-generation nano-device. To extract data reflecting the accurate physical characteristics of NSFETs, the Sentaurus TCAD (technology computer-aided design) simulator was used. The proposed ANN model accurately and efficiently predicts currents and capacitances of devices using the five proposed key geometric parameters and two voltage biases. A variety of experiments were carried out in order to create a powerful ANN-based compact model using a large amount of data up to the sub-3-nm node. In addition, the activation function, physics-augmented loss function, ANN structure, and preprocessing methods were used for effective and efficient ANN learning. The proposed model was implemented in Verilog-A. Both a global device model and a single-device model were developed, and their accuracy and speed were compared to those of the existing compact model. The proposed ANN-based compact model simulates device characteristics and circuit performances with high accuracy and speed. This is the first time that a machine learning (ML)-based compact model has been demonstrated to be several times faster than the existing compact model.

Funder

Institute of Information communications Technology Planning Evaluation (IITP), National Research Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference28 articles.

1. Future Device Modeling Trends

2. BSIM-CMG: A Compact Model for Multi-Gate Transistors;Dunga,2008

3. Modeling Emerging Technologies Using Machine Learning: Challenges and Opportunities;Klemme;Proceedings of the 2020 International Conference on Computer-Aided Design,2020

4. Machine Learning (ML)-Based Model to Characterize the Line Edge Roughness (LER)-Induced Random Variation in FinFET

5. Artificial Neural Network Compact Model for TFTs;Chen;Proceedings of the 2016 International Conference on Computer Aided Design for Thin-Film Transistor Technologies,2016

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3