Experimental Analysis of Lightweight Fire-Rated Board on Fire Resistance, Mechanical, and Acoustic Properties

Author:

Yew Ming Chian1ORCID,Yew Ming Kun2ORCID,Yuen Richard Kwok Kit3ORCID

Affiliation:

1. Department of Mechanical and Material Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Cheras, Kajang 43000, Malaysia

2. Department of Civil Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Cheras, Kajang 43000, Malaysia

3. Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong 999077, China

Abstract

Using lightweight fire-rated board (LFRB) presents cost-effective opportunities for various passive fire protection measures. The aim of the project is to develop an LFRB with enhanced fire resistance, acoustic properties, and mechanical properties. These properties were determined using a Bunsen burner, furnace, energy-dispersive X-ray, impedance tube instrument, and Instron universal testing machine. To fabricate the LFRBs, vermiculite and perlite were blended with flame-retardant binders, and four types of LFRBs were produced. A fire test was conducted to compare the fire-resistance performance of the LFRBs with a commercially available flame-retardant board. The B2 prototype showed exceptional fire-resistant properties, with a temperature reduction of up to 73.0 °C, as compared to the commercially available fire-rated magnesium board. Incorporating nano chicken eggshell into the specially formulated flame-retardant binder preserved the LFRBs’ structural integrity, enabling them to withstand fire for up to 120 min with an equilibrium temperature of 92.6 °C. This approach also provided an absorption coefficient of α = 2.0, a high flexural strength of 3.54 MPa, and effective flame-retardancy properties with a low oxygen/carbon ratio of 2.60. These results make the LFRBs valuable for passive fire protection applications in the construction and building materials industry.

Funder

University of Tunku Abdul Rahman Research Fund

Fundamental Research Grant Scheme

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3