Smoke Image Segmentation Algorithm Suitable for Low-Light Scenes

Author:

Li Enyu1,Zhang Wei1

Affiliation:

1. School of Microelectronics, Tianjin University, Tianjin 300072, China

Abstract

The real-time monitoring and analysis system based on video images has been implemented to detect fire accidents on site. While most segmentation methods can accurately segment smoke areas in bright and clear images, it becomes challenging to obtain high performance due to the low brightness and contrast of low-light smoke images. An image enhancement model cascaded with a semantic segmentation model was proposed to enhance the segmentation effect of low-light smoke images. The modified Cycle-Consistent Generative Adversarial Network (CycleGAN) was used to enhance the low-light images, making smoke features apparent and improving the detection ability of the subsequent segmentation model. The smoke segmentation model was based on Transformers and HRNet, where semantic features at different scales were fused in a dense form. The addition of attention modules of spatial dimension and channel dimension to the feature extraction units established the relationship mappings between pixels and features in the two-dimensional spatial directions, which improved the segmentation ability. Through the Foreground Feature Localization Module (FFLM), the discrimination between foreground and background features was increased, and the ability of the model to distinguish the thinner positions of smoke edges was improved. The enhanced segmentation method achieved a segmentation accuracy of 91.68% on the self-built dataset with synthetic low-light images and an overall detection time of 120.1 ms. This method can successfully meet the fire detection demands in low-light environments at night and lay a foundation for expanding the all-weather application of initial fire detection technology based on image analysis.

Publisher

MDPI AG

Subject

Earth and Planetary Sciences (miscellaneous),Safety Research,Environmental Science (miscellaneous),Safety, Risk, Reliability and Quality,Building and Construction,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3