Affiliation:
1. School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2. GanSu CSCEC Municipal Engineering Investigation And Design Institute Co., Ltd., Lanzhou 730000, China
Abstract
Because of the current situation where the stability research of filled-slope reinforced by a frame with prestressed anchor-plates lags behind the actual engineering application, based on the ultimate balance theory, the calculation formulas of stability factor under the four arc slip surface of filled-slopes reinforced by a frame with prestressed anchor-plates are derived by using the improved Bishop method; the corresponding search method of the most dangerous slip surface is given and the calculation formulas of the pullout force of anchor-plates are improved. Based on two examples, the stability results calculated by the proposed algorithm are compared with those calculated by PLAXIS 3D and GeoStudio 2012 finite element software, and the following conclusions are drawn. (1) The improved pullout force of anchor-plates takes into account the friction of the front and rear surface of the anchor-plate and the effect of cohesion of fill soil in the passive earth pressure on the front end of the anchor-plate, which makes the force of the anchor-plate more complete. (2) The stability factor of example 1 calculated by this method differs from the results simulated by PLAXIS 3D and GeoStudio 2012 by 4.6% and 7.1%, respectively; the stability factor of example 2 calculated by this method differs from the results simulated by PLAXIS3D and GeoStudio 2012 by 3.2% and 4.5%, respectively, which can meet the engineering requirements. (3) The stability analysis method of filled-slope reinforced by a frame with prestressed anchor-plates that is proposed is reasonable and suitable for any arc slip surface in the filled-slope reinforced by a frame with prestressed anchor-plates, and it provides some guiding values for the design of practical engineering.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献