Numerical Investigation of a Local Precise Reinforcement Method for Dynamic Stability of Rock Slope under Earthquakes Using Continuum–Discontinuum Element Method

Author:

Song Danqing12,Shi Wanpeng3,Wang Chengwen4,Dong Lihu5,He Xin6,Wu Enge5,Zhao Jianjun5,Lu Runhu3

Affiliation:

1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, China

2. State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640, China

3. School of Civil Engineering and Architecture, Henan University, Kaifeng 475004, China

4. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China

5. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China

6. China Construction Fifth Engineering Division Co., Ltd., Changsha 410000, China

Abstract

The slope reinforcement scheme has an important influence on the prevention and control of landslides. A reasonable reinforcement scheme can improve the reliability, economy and efficiency of landslide resistance. It is urgent to establish a local precise reinforcement method for landslides on the basis of clear process and the instability modes of landslides. Taking a high-steep anti-dip rock slope as an example, six numerical models are established by using the continuum–discontinuum element method (CDEM) to carry out seismic damage and dynamic analysis of slopes. By comparing the seismic response and damage characteristics of being unstrengthened, local precise reinforcement and overall reinforcement models, the applicability of the proposed local precise reinforcement method for the slopes is discussed. The results show that the determination of the dynamic amplifying effect and seismic damage characteristics of slopes is the primary prerequisite of the local precise reinforcement method. The dynamic amplification effect of the slope toe, crest and shallow slope surface are much larger, that is, they are the potential reinforcement areas. The local precision reinforcement times should be controlled within a certain number of times, and the slope after the first three times of the local reinforcement effect is the best. However, more than three times after the reinforcement effect it becomes worse. Moreover, the dynamic amplification effect, the equivalent crack ratio and the mechanical energy of the slope after three times of local precision reinforcement are similar to the overall reinforcement effect, which indicates that local precision reinforcement has good feasibility. This work can provide references for landslide disasters prevention and control.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

National Postdoctoral Program for Innovative Talent of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3