Numerical Analysis of Interbedded Anti-Dip Rock Slopes Based on Discrete Element Modeling: A Case Study

Author:

Li Ming123,Yue Zhufeng4,Ji Hongguang1,Xiu Zhanguo4,Han Jianhua4,Meng Fanzhen4

Affiliation:

1. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. CCTEG Shenyang Research Institute, Fushun 113122, China

3. State Key Laboratory of Coal Mine Safety Technology, Fushun 113122, China

4. College of Science, Qingdao University of Technology, Qingdao 266033, China

Abstract

Varying geological conditions and different rock types lead to complex failure modes and instability of interbedded anti-dip rock slopes. To study the characteristics of failure evolution of interbedded anti-dip slopes, a two-dimensional particle flow code (PFC2D) based on the discrete element method (DEM) was utilized to establish an interbedded anti-dip rock slope numerical model for the Fushun West Open-pit Mine based on the true geological conditions and field investigations. The slope model with an irregular surface consists of interbedded mudstone and brown shale as two different rock layers, and a number of small-scale rock joints are randomly distributed in the rock layers. The influence of different inclination angles (20° and 70°) of the rock layer and slope angles (60° and 80°) on the stability of interbedded anti-dip rock slopes was considered. The evolution of the failure progress was monitored by the displacement field and force field. The simulation results showed that the rock joints in the rock stratum promoted crack initiation and increased the crack density but did not change its shear-slip failure mode. A large inclination angle of the rock layers and slope angle can lead to topping slip failure along the slip zone. However, shear-slip instability generally occurs in interbedded anti-dip rock slopes with small inclination angles of the rock layer and small slope angles. These results can contribute to a better understanding of the failure mechanism of interbedded anti-dip rock slopes under different geological conditions and provide a reference for disaster prevention.

Funder

Taishan Scholars Program

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3