A Trajectory Generation Algorithm for a Re-Entry Gliding Vehicle Based on Convex Optimization in the Flight Range Domain and Distributed Grid Points Adjustment

Author:

Li Mingjie1,Zhou Chijun2,Shao Lei2,Lei Humin2,Luo Changxin2

Affiliation:

1. Graduate College, Air Force Engineering University, Xi’an 710051, China

2. Air Defense and Missile Defense College, Air Force Engineering University, Xi’an 710051, China

Abstract

Optimal trajectory generation for the guidance of re-entry glide vehicles is of great significance. To realize a faster generation speed and consistency with the guidance mechanism, an improved convex optimization trajectory generation algorithm based on the flight range domain for the re-entry glide vehicles is proposed in this paper. Firstly, according to the definition of the range-to-go, the projected range-to-go of the re-entry glide vehicle is presented when the dynamic model is converted to the flight range domain. Then, the attack angle and bank angle are expanded to the state variables and the change rate, which is designed as a new control variable. When the dynamic models and constraints are convexificated and discretized, the vehicle trajectory discrete convex model in the flight range domain is proposed. In order to further improve the generation speed and accuracy, an initial trajectory generation method that is close to the guidance requirements is proposed by the landing points of different control laws. In addition, by analyzing the nonlinear illegal degree of grid points, the probability density of grid points and the adjustment strategy of grid points are proposed. Finally, the ablation experiment shows that the initial trajectory generation and distributed grid points method works. With different target points, different no-fly zones, different initial states, and the Monte Carlo experiment, our method can effectively and robustly complete the generation. The lateral and longitudinal generation error is less than 1 km. And compared with the Gaussian pseudo-spectral method, our method obtained comparable accuracy and faster speed.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3