An Improved Predictor-Corrector Guidance Algorithm for Reentry Glide Vehicle Based on Intelligent Flight Range Prediction and Adaptive Crossrange Corridor

Author:

Li Mingjie1ORCID,Zhou Chijun2ORCID,Shao Lei2,Lei Humin2ORCID,Luo Changxin1

Affiliation:

1. Graduate College, Air Force Engineering University, Xi’an 710051, China

2. Air and Missile Defense College, Air Force Engineering University, Shanxi, Xi’an 710051, China

Abstract

For traditional predictor-corrector guidance algorithm for reentry glide vehicle, it cost a lot of time to obtain predicted flight range with a slow speed to iterate. In this paper, according to residual network (ResNet)’s block and dynamic model of vehicle, through analyzing the characteristics of predicted flight range with constraints, the flight range prediction block and flight range prediction neural network are designed, which can obtain the predicted range accurately and quickly; then aiming at the separation between guidance logic and no-fly zone avoidance logic, which may lead to guidance failure and increasing of the sign variation number of the bank angle, the no-fly zone crossrange and the no-fly zone mapping crossrange are proposed in this paper. According the repulsion force of artificial potential field, an adaptive crossrange corridor combining guidance logic and no-fly zone avoidance logic is proposed, and the convergence of the corridor is analyzed theoretically. Through simulation, the block number of flight range prediction network is determined firstly. By this method, the efficiency of lateral guidance can be improved. Then, through the simulation with the different no-fly zones under different disturbed conditions, the stability and validity of the guidance method are verified. Finally, compared with other predictor-corrector algorithms, the proposed method can realize guidance with less sign variation number of bank angle and better avoidance for no-fly zones.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3