Single Image Reflection Removal Based on Residual Attention Mechanism

Author:

Guo Yubin12,Lu Wanzhou12ORCID,Li Ximing1,Huang Qiong12ORCID

Affiliation:

1. College of Mathematics and Informatics, South China Agricultural University, Guangzhou 510642, China

2. Guangzhou Key Laboratory of Intelligent Agriculture, Guangzhou 510642, China

Abstract

Affected by shooting angle and light intensity, shooting through transparent media may cause light reflections in an image and influence picture quality, which has a negative effect on the research of computer vision tasks. In this paper, we propose a Residual Attention Based Reflection Removal Network (RABRRN) to tackle the issue of single image reflection removal. We hold that reflection removal is essentially an image separation problem sensitive to both spatial and channel features. Therefore, we integrate spatial attention and channel attention into the model to enhance spatial and channel feature representation. For a more feasible solution to solve the problem of gradient disappearance in the iterative training of deep neural networks, the attention module is combined with a residual network to design a residual attention module so that the performance of reflection removal can be ameliorated. In addition, we establish a reflection image dataset named the SCAU Reflection Image Dataset (SCAU-RID), providing sufficient real training data. The experimental results show that the proposed method achieves a PSNR of 23.787 dB and an SSIM value of 0.885 from four benchmark datasets. Compared with the other most advanced methods, our method has only 18.524M parameters, but it obtains the best results from test datasets.

Funder

Science and Technology Program of Guangzhou

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3