Affiliation:
1. Nagoya Institute of Technology, Nagoya 464-8602, Japan
Abstract
The lighting up of buildings is one form of entertainment that makes a city more colorful, and photographers sometimes change this lighting using photo-editing applications. This paper proposes a method for automatically performing such changes that follows the Retinex theory. Retinex theory indicates that the complex scenes caught by the human visual system are affected by surrounding colors, and Retinex-based image processing uses these characteristics to generate images. Our proposed method follows this approach. First, we propose a method for extracting a relighting saliency map using Retinex with edge-preserving filtering. Second, we propose a sampling method to specify the lighting area. Finally, we composite the additional light to match the human visual perception. Experimental results show that the proposed sampling method is successful in keeping the illuminated points in bright locations and equally spaced apart. In addition, the proposed various diffusion methods can enhance nighttime skyline photographs with various expressions. Finally, we can add in a new light by considering Retinex theory to represent the perceptual color.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Decomposed Multilateral Filtering for Accelerating Filtering with Multiple Guidance Images;Sensors;2024-01-19
2. SIMD-Constrained Lookup Table for Accelerating Variable-Weighted Convolution on x86/64 CPUs;IEEE Access;2024
3. Optical-Camera Communication;Handbook of Optical Wireless Communication;2024
4. The Modified Unsupervised Low-Light Image Enhancement Approach Based on the Retinex Theory;2023 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics);2023-12-17
5. Experimental research on image demodulation for optical camera communication;Optical Engineering;2023-12-08