Decomposed Multilateral Filtering for Accelerating Filtering with Multiple Guidance Images

Author:

Nogami Haruki1ORCID,Kanetaka Yamato1ORCID,Naganawa Yuki1ORCID,Maeda Yoshihiro2ORCID,Fukushima Norishige1ORCID

Affiliation:

1. Department of Computer Science, Faculty of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan

2. Department of Electrical Engineering, Faculty of Engineering, Tokyo University of Science, Tokyo 125-8585, Japan

Abstract

This paper proposes an efficient algorithm for edge-preserving filtering with multiple guidance images, so-called multilateral filtering. Multimodal signal processing for sensor fusion is increasingly important in image sensing. Edge-preserving filtering is available for various sensor fusion applications, such as estimating scene properties and refining inverse-rendered images. The main application is joint edge-preserving filtering, which can preferably reflect the edge information of a guidance image from an additional sensor. The drawback of edge-preserving filtering lies in its long computational time; thus, many acceleration methods have been proposed. However, most accelerated filtering cannot handle multiple guidance information well, although the multiple guidance information provides us with various benefits. Therefore, we extend the efficient edge-preserving filters so that they can use additional multiple guidance images. Our algorithm, named decomposes multilateral filtering (DMF), can extend the efficient filtering methods to the multilateral filtering method, which decomposes the filter into a set of constant-time filtering. Experimental results show that our algorithm performs efficiently and is sufficient for various applications.

Funder

JSPS KAKENHI

Environmental Restoration and Conservation Agency of Japan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3