ECFuse: Edge-Consistent and Correlation-Driven Fusion Framework for Infrared and Visible Image Fusion

Author:

Chen Hanrui123ORCID,Deng Lei123,Zhu Lianqing123,Dong Mingli123

Affiliation:

1. Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, Beijing 100192, China

2. Beijing Laboratory of Optical Fiber Sensing and System, Beijing Information Science & Technology University, Beijing 100016, China

3. Guangzhou Nansha Intelligent Photonic Sensing Research Institute, Guangzhou 511462, China

Abstract

Infrared and visible image fusion (IVIF) aims to render fused images that maintain the merits of both modalities. To tackle the challenge in fusing cross-modality information and avoiding texture loss in IVIF, we propose a novel edge-consistent and correlation-driven fusion framework (ECFuse). This framework leverages our proposed edge-consistency fusion module to maintain rich and coherent edges and textures, simultaneously introducing a correlation-driven deep learning network to fuse the cross-modality global features and modality-specific local features. Firstly, the framework employs a multi-scale transformation (MST) to decompose the source images into base and detail layers. Then, the edge-consistent fusion module fuses detail layers while maintaining the coherence of edges through consistency verification. A correlation-driven fusion network is proposed to fuse the base layers containing both modalities’ main features in the transformation domain. Finally, the final fused spatial image is reconstructed by inverse MST. We conducted experiments to compare our ECFuse with both conventional and deep leaning approaches on TNO, LLVIP and M3FD datasets. The qualitative and quantitative evaluation results demonstrate the effectiveness of our framework. We also show that ECFuse can boost the performance in downstream infrared–visible object detection in a unified benchmark.

Funder

Beijing Municipal Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3