Design and Dynamic Analysis of the Wire-Line Coring Robot for Deep Lunar Rocks

Author:

Wen Yufeng1,Zhang Guoqing1,Xie Heping2,Gao Mingzhong2,Zhang Xu1,Wang Yaohui1,Li Cunbao2

Affiliation:

1. College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China

2. Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China

Abstract

Deep lunar rocks carry geological information about the primitive Moon and are of great scientific value. In this paper, a coring robot for deep lunar rocks was proposed for the lunar environment based on the wire-line sampling device. This robot consists of the coring executor on the ground to assist in coring tube replacement and sample storage and the wireline self-excavating coring (WSC) robot for active drilling underground, which can provide autonomous deep coring on the moon. Subsequently, based on Prandtl’s failure mechanism and the prediction equations of the mechanical properties of the lunar soil, the mathematical relationship between the ultimate support force and the depth of the support point of the WSC robot was constructed. Additionally, the drilling scheme of the WSC robot at different depths was also determined. The constraint model of the impact module was established, and the structural parameters were optimized through non-linear programming to achieve the maximum impact energy. Simulations of the impact process were then carried out in explicit dynamics. The simulation results show that the optimized impact module can effectively drill through the lunar rocks. This result validates, to some extent, the drilling capability of the WSC robot in lunar rocks. The research work can provide technical reference and theoretical support for deep coring lunar rocks.

Funder

National Natural Science Foundation of China

Shenzhen Natural Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3