Design of Man-Machine Synergic Lunar Coring Device and Its Coring Dynamic Analysis

Author:

Zhang Xu1,Zhang Guoqing1ORCID,Gao Mingzhong2,Wen Yufeng1,Wang Yaohui1

Affiliation:

1. College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China

2. Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization, Institute of Deep Earth Sciences and Green Energy, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China

Abstract

The Moon is the closest extraterrestrial celestial body to the Earth. Sampling and analysis of lunar regolith or rocks can pave the way for the development and utilization of lunar resources. The acquisition of lunar regolith samples with original stratigraphic information by astronauts on the lunar surface is one of the essential missions in the manned lunar landing project. Therefore, to maintain the original stratigraphic information of the lunar samples during the sampling process while further improving the coring rate and sampling depth, a handheld dual-mode lunar regolith coring device is proposed in this paper. The device innovatively combines impact penetration and rotary drilling sampling, which allows the selection of a suitable sampling method according to the environment. In addition, this study designs a synergic coring device that can be operated by the astronaut and carried on the lander or rover based on the handheld coring device, which can ensure safe and stable coring mission. The mechanical analysis is carried out for the key properties in the coring device, the corresponding mechanical model is established, the structural parameters are optimally designed, and the performance analysis is carried out accordingly. Finally, the impact and drilling process of the coring device is simulated in explicit dynamics, and the results show that the optimized impact module can effectively penetrate the lunar rocks. The research work will provide technical reference and theoretical support for the design of human–machine synergic coring devices in manned lunar exploration missions.

Funder

National Natural Science Foundation of China

Shenzhen Natural Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3