Engineering Properties and Microscopic Mechanisms of Composite-Cemented Soil as Backfill of Ultra-Deep and Ultra-Narrow Foundation Trenches

Author:

Dong Xu1,Wang Mingdong1,Song Minyuan12,Hou Ning1

Affiliation:

1. School of Civil Engineering, Shandong Jiaotong University, Jinan 250357, China

2. Shandong Railway Investment Holding Group Co., Ltd., Jinan 250357, China

Abstract

The backfilling of lime soil in ultra-deep and ultra-narrow foundation trenches is a difficult construction link, and ordinary-cemented soil has drawbacks, including poor strength, impermeability, and frost resistance. To solve these problems, fly ash (FA)–water glass (WG)-composite-cemented soil is developed based on a background project. The three-factor orthogonal tests are conducted on the unconfined compressive strength (UCS) of the composite-cemented soil, and the optimal engineering mix proportion is proposed for the FA-WG-composite-cemented soil. Its UCS is compared with that of cemented soil only doped with FA or WG (FA- and WG-cemented soil). In addition, the cyclic wetting–drying tests, cyclic freeze–thaw tests, and impermeability tests are carried out to study the endurance of the composite-cemented soil in cold regions rich in water. The hydration products of the composite-cemented soil are investigated through scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis, and the curing mechanism of the composite-cemented soil is discussed from the microscopic perspective. The research results indicate that the mixing ratio of cement is crucial to the strength development of the cemented soil; the mixing ratio of FA greatly influences the strength development of the cemented soil in the middle and late stages; the mixing ratio of WG only slightly affects the strength. The ratio of cement, FA, and WG of 9%:12%:3% is the optimal engineering mix proportion of the composite-cemented soil. Compared with ordinary-cemented oil and FA- and WG-cemented soil, the composite-cemented soil shows significantly improved compressive load-bearing capacity. The permeability coefficient of the composite-cemented soil is always obviously lower than that of the ordinary-cemented soil after any curing period. Despite the mass loss, the composite-cemented soil is superior to the ordinary one in overall endurance after wetting–drying and freeze–thaw cycles. Through SEM and XRD analysis, the content of hydration products of the composite-cemented soil is found to be obviously higher than that of ordinary-cemented soil after any curing period, and the hydrates exert stronger cementing action on soil particles in the composite-cemented soil. The contents of C-S-H gel and Aft crystals in the composite-cemented soil are apparently larger than those in the ordinary-cemented soil. Under the alkali activation of WG, the FA produces free SiO32− and AlO2−, which undergo the polymerization reaction with Ca2+ to generate C-S-H gel and C-A-H gel, further promoting the hydration of cement.

Funder

National Key R&D Program of China

Science and Technology Plan of Shandong Provincial Department of Transportation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of waste glass on concrete strength and permeability during dry-wet cycles;European Journal of Environmental and Civil Engineering;2024-08

2. Physical, mechanical, and microstructural characteristics of fly ash replaced cement deep mixing columns;Bulletin of Engineering Geology and the Environment;2024-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3