The Use of Lime for Drainage of Cohesive Soils Built into Hydraulic Engineering Embankments

Author:

Połomski MaksymilianORCID,Wiatkowski MirosławORCID

Abstract

This paper examines whether lime can be used for the drainage of cohesive soils built into hydraulic engineering embankments. It is a common practice, as early as the planning stage, to seek to reduce costs and accelerate work while maintaining the quality of work. Although lime stabilisation is not currently a widely used solution in the hydraulic engineering sector, it can play an important role in the future. Lime stabilisation can be considered an optimal solution as it shortens the embankment construction by eliminating the need to replace the soil when it is over-wet. This paper investigates whether it is possible to apply lime treatment in the forming of hydraulic engineering embankments as well as analyses the efficiency of mechanical soil drainage and compares it against chemical drainage (lime stabilisation) based on the example of the construction of the Szalejów Górny dry flood control reservoir located in south-western Poland. It presents the results of geotechnical investigations carried out during the construction phase and compares them with cases reported in the literature. The observation of the construction process reveals a high efficiency and effectiveness of quicklime (CaO) as a stabiliser in the soil used for reservoir dams. Adoption of this technology made it possible to achieve significantly higher embankment formation rates (max. approx. 14,000 m3/week) than when mechanical drainage was used (max. approx. 11,000 m3/week). It was also noted that the lime stabilisation process was significantly independent of unfavourable weather conditions, resulting in frequent high weekly efficiencies. Geotechnical tests on samples of the lime-stabilised soil built into the dam body confirmed the possibility of obtaining favourable strength parameters, particularly with regard to the angle of internal friction, cohesion and degree of plasticity. Therefore, it can be expected that lime will be used more widely in the formation of hydraulic engineering embankments and that soil stabilisation technology will be applied more frequently.

Funder

Wrocław University of Environmental and Life Sciences

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference56 articles.

1. Commentary of research situation and innovation frontier in hydro-structure engineering science;Sci. China Technol. Sci.,2011

2. Managing water—Challenges for Poland;Nauka,2021

3. Winter, J.A., Wita, A., Popielski, P., and Sieinski, E. (2017). Damming Structures—Operation and Monitoring, Institute of Meteorology and Water Management. Available online: https://repo.pw.edu.pl/info/book/WUTcb39674b209442e78b478eef6ee4c645/.

4. Dam safety—Comparative study of normative documents;Acta Sci. Pol. Archit.,2017

5. Nowak, B., and Lawniczak-Malińska, A.E. (2019). The Influence of Hydrometeorological Conditions on Changes in Littoral and Riparian Vegetation of a Meromictic Lake in the Last Half-Century. Water, 11.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3