Fresh and Mechanical Properties of High-Performance Self-Compacting Concrete Containing Ground Granulated Blast Furnace Slag and Polypropylene Fibres

Author:

Smarzewski Piotr1ORCID

Affiliation:

1. Faculty of Civil Engineering and Geodesy, Military University of Technology, 2 gen. Sylwestra Kaliskiego, 00-908 Warsaw, Poland

Abstract

The purpose of this study was to evaluate the appropriateness of polypropylene fibres (PP) to decrease the brittleness of high-performance self-compacting concrete (HPSCC). The influence of PP fibre content on the fresh and mechanical assets of PP-fibre-reinforced HPSCC was investigated. PP fibres were applied with 0, 0.025, 0.05, 0.075, 0.125, 0.25% contents to the HPC blends with high cement replacement by ground granulated blast furnace slag (GGBS). The impact of PP fibre fraction on fresh properties of HPSCC, counting passing capability as well as filling parameters is discussed. In addition, the mechanical properties, i.e., compressive, splitting tensile, and flexural strengths, were evaluated after 7 and 28 days of specimens’ maturation in water. The higher content of PP fibres gradually reduced the HPSCC workability and improved the mechanical properties. The high performance of fresh and hardened ecological HPSCCs containing 46% GGBS instead of cement with 0.025–0.25% PP fibre content proves the great potential of using these composites in various applications in the construction industry. The advantages of the potential recycling of GGBS include, among others, the reduced use of cement in a durable material, reduced amount of waste in landfill and lower emission levels of greenhouse gases.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference56 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3