Multiscale Analysis for Improving Texture Classification

Author:

Ataky Steve Tsham MpindaORCID,Saqui DiegoORCID,de Matos JonathanORCID,de Souza Britto Junior AlceuORCID,Lameiras Koerich AlessandroORCID

Abstract

Information from an image occurs over multiple and distinct spatial scales. Image pyramid multiresolution representations are a useful data structure for image analysis and manipulation over a spectrum of spatial scales. This paper employs the Gaussian–Laplacian pyramid to separately treat different spatial frequency bands of a texture. First, we generate three images corresponding to three levels of the Gaussian–Laplacian pyramid for an input image to capture intrinsic details. Then, we aggregate features extracted from gray and color texture images using bioinspired texture descriptors, information-theoretic measures, gray-level co-occurrence matrix feature descriptors, and Haralick statistical feature descriptors into a single feature vector. Such an aggregation aims at producing features that characterize textures to their maximum extent, unlike employing each descriptor separately, which may lose some relevant textural information and reduce the classification performance. The experimental results on texture and histopathologic image datasets have shown the advantages of the proposed method compared to state-of-the-art approaches. Such findings emphasize the importance of multiscale image analysis and corroborate that the descriptors mentioned above are complementary.

Funder

Regroupement Strategique REPARTI-Fonds de Recherche du Québec—Nature et Technologie

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference45 articles.

1. Tuceryan, M., and Jain, A.K. (1993). Handbook of Pattern Recognition and Computer Vision, World Scientific.

2. Simon, P., and Uma, V. (2018). Data Engineering and Intelligent Computing, Springer.

3. From BoW to CNN: Two decades of texture representation for texture classification;Liu;Int. J. Comput. Vis.,2019

4. Textural features for image classification;Haralick;IEEE Trans. Syst. Man Cybern.,1973

5. Pietikäinen, M., Hadid, A., Zhao, G., and Ahonen, T. (2011). Computer Vision Using Local Binary Patterns, Springer Science & Business Media.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3