Graph- and Machine-Learning-Based Texture Classification

Author:

Ali Musrrat1ORCID,Kumar Sanoj2ORCID,Pal Rahul3ORCID,Singh Manoj K.4ORCID,Saini Deepika5ORCID

Affiliation:

1. Department of Basic Sciences, PYD, King Faisal University, Al Ahsa 31982, Saudi Arabia

2. School of Computer Science, UPES, Dehradun 248007, Uttarakhand, India

3. Department of Mathematics, UPES, Dehradun 248007, Uttarakhand, India

4. School of Computer Science Engineering & Technology, Bennett University, Greater Noida 201310, Uttar Pradesh, India

5. Department of Mathematics, Graphic Era (Deemed to be) University, Dehradun 248002, Uttarakhand, India

Abstract

The analysis of textures is an important task in image processing and computer vision because it provides significant data for image retrieval, synthesis, segmentation, and classification. Automatic texture recognition is difficult, however, and necessitates advanced computational techniques due to the complexity and diversity of natural textures. This paper presents a method for classifying textures using graphs; specifically, natural and horizontal visibility graphs. The related image natural visibility graph (INVG) and image horizontal visibility graph (IHVG) are used to obtain features for classifying textures. These features are the clustering coefficient and the degree distribution. The suggested outcomes show that the aforementioned technique outperforms traditional ones and even comes close to matching the performance of convolutional neural networks (CNNs). Classifiers such as the support vector machine (SVM), K-nearest neighbor (KNN), decision tree (DT), and random forest (RF) are utilized for the categorization. The suggested method is tested on well-known image datasets like the Brodatz texture and the Salzburg texture image (STex) datasets. The results are positive, showing the potential of graph methods for texture classification.

Funder

Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3