A Robust Assessment Model of the Solar Electrical-Thermal Energy Comprehensive Accommodation Capability in a District Integrated Energy System

Author:

Wei ,Jia ,Mu ,Wu ,Jia

Abstract

As effective utilization of solar resources is a significant way to address the imbalance between energy supply and demand. Therefore, reasonably assessing the accommodation capability of solar energy is important. A two-stage robust evaluation model is proposed for the solar electricity-thermal energy comprehensive accommodation capability in a district integrated energy system. The accommodation capability index is constructed based on the second law of thermodynamics. A robust optimization model was adopted to deal with the uncertainty of solar irradiance. In the solution procedure, the non-convex non-linear power flow model is transformed into a second-order cone model to effectively fit the proposed two-stage robust evaluation model. Finally, a case study verifies the effectiveness of the proposed model and the solution method. The influence of irradiance fluctuation range, gas boiler, and energy storage is discussed in detail.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference36 articles.

1. Multi-energy system towards renewable energy accommodation: Review and prospect;Yang;Autom. Electr. Power Syst.,2018

2. Robust unit commitment to improve the admissible region of wind power;Wei;Trans. China Electrotech. Soc.,2018

3. Wind power accommodation by combined heat and power plant with electric boiler and its national economic evaluation;Lyu;Autom. Electr. Power Syst.,2014

4. Wind power integration using individual heat pumps – Analysis of different heat storage options

5. Wind power integration in Aalborg Municipality using compression heat pumps and geothermal absorption heat pumps

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3