An Enhanced Second-Order Cone Programming-Based Evaluation Method on Maximum Hosting Capacity of Solar Energy in Distribution Systems with Integrated Energy

Author:

Wang Chunyi,Luo FengzhangORCID,Jiao Zheng,Zhang Xiaolei,Lu Zhipeng,Wang Yanshuo,Zhao Ren,Yang Yang

Abstract

In order to adjust to the change of the large-scale deployment of photovoltaic (PV) power generation and fully exploit the potentialities of an integrated energy distribution system (IEDS) in solar energy accommodation, an evaluation method on maximum hosting capacity of solar energy in IEDS based on convex relaxation optimization algorithm is proposed in this paper. Firstly, an evaluation model of maximum hosting capacity of solar energy for IEDS considering the electrical-thermal comprehensive utilization of solar energy is proposed, in which the maximization of PV capacity and solar collector (SC) capacity are fully considered. Secondly, IEDS’s potential in electricity, heat, and gas energy coordinated optimization is fully exploited to enhance the hosting capacity of solar energy in which the electric distribution network, heating network, and natural gas network constraints are fully modeled. Then, an enhanced second-order cone programming (SOCP)-based method is employed to solve the proposed maximum hosting capacity model. Through SOCP relaxation and linearization, the original nonconvex nonlinear programming model is converted into the mixed-integer second-order cone programming model. Meanwhile, to ensure the exactness of SOCP relaxation and improve the computation efficiency, increasingly tight linear cuts of distribution system and natural gas system are added to the SOCP relaxation. Finally, an example is given to verify the effectiveness of the proposed method. The analysis results show that the maximum hosting capacity of solar energy can be improved significantly by realizing the coordination of an integrated multi-energy system and the optimal utilization of electricity, heat, and gas energy. By applying SOCP relaxation, linearization, and adding increasingly tight linear cuts of distribution system and natural gas system to the SOCP relaxation, the proposed model can be solved accurately and efficiently.

Funder

National Natural Science Foundation of China

Project of State Grid Shandong Electric Power Company

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference39 articles.

1. Comprehensive evaluation of low-grade solar trigeneration system by photovoltaic-thermal collectors;Li;Energy Convers. Manag.,2020

2. Wei, W., Jia, H.Y., Mu, Y.F., Wu, J.Z., and Jia, H.J. (2019). A robust assessment model of the solar electrical-thermal energy comprehensive accommodation capability in a district integrated energy system. Energies, 7.

3. Enhancing photovoltaic hosting capacity-A stochastic approach to optimal planning of static var compensator devices in distribution networks;Xu;Appl. Energy,2019

4. A review on the utilization of energy storage system for the flexible and safe operation of renewable energy microgrids;Liu;Proc. CSEE,2020

5. Optimal sizing for grid-connected pV-and-storage microgrid considering demand response;Zhao;Proc. CSEE,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3