Comparison of Pin Mill and Hammer Mill in the Fine Grinding of Sphagnum Moss

Author:

Ämmälä Ari1ORCID

Affiliation:

1. Fiber and Particle Engineering Research Unit, Oulu University, 90014 Oulu, Finland

Abstract

Dried sphagnum moss was ground using a pin mill and a hammer mill under various operating conditions, i.e., changes in the rotor frequency and feed rate. The specific energy consumption of the size reduction was recorded. The ground powder was characterized by median particle size, width of size distribution (span), loose and tapped bulk densities, and the Hausner ratio. Pin milling used less energy for size reduction than hammer milling, especially when the target size was below 100 μm. In both milling methods, the specific energy consumption was mainly caused by the rotor frequency used. However, in pin milling, the specific energy consumption was also dependent on the production rate: the higher the rate, the higher the energy consumption. No such dependence was observed with the hammer mill. The span was wider in pin milling than hammer milling in the intermediate product size range although the difference decreased at the fine and coarse ends. A similar pattern was found for bulk densities. However, the flowability of powder, as characterized by the Hausner ratio, was comparable between the grinding methods.

Funder

Council of Oulu Region

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3