Simulation Analysis of the Cooling Effect of Urban Water Bodies on the Local Thermal Environment

Author:

Cao Beilei,Chen QiangORCID,Du Mingyi,Cheng Qianhao,Li Yuanyuan,Liu Rui

Abstract

Urban water bodies have a cooling effect and alter the local urban thermal environment. However, current research is unclear regarding the relationships between factors such as the spatial density, area proportion, and distribution pattern of water bodies and the cooling effect of water on the local thermal environment. To clarify these relationships, it is critical to quantify and evaluate the influence these factors have on the cooling effect of water in the urban landscape. Therefore, we analyzed the cooling effect of different water bodies on the local thermal environment at the microscale by comparing their area proportions and distribution patterns using numerical simulations. Furthermore, we analyzed the day–night variation in the cooling effect of urban water bodies with different areas and distribution patterns. We used the area proportion, separation index (SI), and landscape shape index (LSI) to indicate the layouts of water bodies. The results showed that the cooling effect of a water body was higher during the day than at night. These results also showed that area proportion and LSI were positively correlated with the water body’s cooling effect. However, the efficiency of the cooling effect gradually decreased with increasing area proportion. When the LSI increased, more areas within the region displayed larger cooling effect values, but the uniformity of the regional cooling diminished. Additional results showed that the cooling effect had no significant positive correlation with SI. A moderate SI could enhance the uniformity of the cooling effect in the region and link the cooling effect between water patches.

Funder

BUCEA Post Graduate Innovation Project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3