Study on Summer Microclimate Analysis and Optimization Strategies for Urban Parks in Xinjiang—A Case Study of Mingzhu Park

Author:

Zhao Zhao1,Li Jie1,Fu Zongchi2

Affiliation:

1. College of Water & Architectural Engineering, Shihezi University, Shihezi 832003, China

2. Agricultural College, Shihezi University, Shihezi 832003, China

Abstract

To investigate the impact of landscape characteristics on microclimate and thermal comfort in summer urban parks in Xinjiang, we focused on Mingzhu Park in Shihezi City. We collected microclimatic data through field measurements and analyzed the correlations among these factors, the physiological equivalent temperature (PET), and the landscape features. ENVI-met was utilized for microclimate simulations to assess the optimization effects. The results revealed that different landscape features significantly influenced the microclimate and thermal comfort. Trees and grass effectively lowered the temperature, increased humidity, reduced wind speeds, blocked solar radiation, and decreased the PET. Water bodies exposed to sunlight and without shade have a low reflectivity, leading to significant temperature increases. While evaporation can lower the surrounding temperatures, the water surface temperature remains higher than in shaded areas, raising temperatures there. The temperature, humidity, wind speed, and mean radiant temperature show significant correlations. The correlation ranking is as follows: mean radiant temperature (Tmrt) > air temperature (Ta) > relative humidity (RH) > wind speed (Va). After increasing the tree cover and designing dispersed water bodies, the average PET decreased by up to 0.67 °C, with the park experiencing the largest reduction of 1.86 °C. The PET in the eastern built-up area was reduced by 0.35 °C, and in the western built-up area, by only 0.13 °C.

Funder

Xinjiang Construction Corps Science and Technology Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3