Pulsed Optically Pumped Magnetometers: Addressing Dead Time and Bandwidth for the Unshielded Magnetorelaxometry of Magnetic Nanoparticles

Author:

Jaufenthaler AaronORCID,Kornack Thomas,Lebedev VictorORCID,Limes Mark E.ORCID,Körber RainerORCID,Liebl Maik,Baumgarten DanielORCID

Abstract

Magnetic nanoparticles (MNP) offer a large variety of promising applications in medicine thanks to their exciting physical properties, e.g., magnetic hyperthermia and magnetic drug targeting. For these applications, it is crucial to quantify the amount of MNP in their specific binding state. This information can be obtained by means of magnetorelaxometry (MRX), where the relaxation of previously aligned magnetic moments of MNP is measured. Current MRX with optically pumped magnetometers (OPM) is limited by OPM recovery time after the shut-off of the external magnetic field for MNP alignment, therewith preventing the detection of fast relaxing MNP. We present a setup for OPM-MRX measurements using a commercially available pulsed free-precession OPM, where the use of a high power pulsed pump laser in the sensor enables a system recovery time in the microsecond range. Besides, magnetometer raw data processing techniques for Larmor frequency analysis are proposed and compared in this paper. Due to the high bandwidth (≥100 kHz) and high dynamic range of our OPM, a software gradiometer in a compact enclosure allows for unshielded MRX measurements in a laboratory environment. When operated in the MRX mode with non-optimal pumping performance, the OPM shows an unshielded gradiometric noise floor of about 600 fT/cm/Hz for a 2.3 cm baseline. The noise floor is flat up to 1 kHz and increases then linearly with the frequency. We demonstrate that quantitative unshielded MRX measurements of fast relaxing, water suspended MNP is possible with the novel OPM-MRX concept, confirmed by the accurately derived iron amount ratios of MNP samples. The detection limit of the current setup is about 1.37 μg of iron for a liquid BNF-MNP-sample (Bionized NanoFerrite) with a volume of 100 μL.

Funder

Austrian Science Fund

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3