A Review of Characterization Techniques for Ferromagnetic Nanoparticles and the Magnetic Sensing Perspective

Author:

Barmpatza Alexandra C.1ORCID,Baklezos Anargyros T.1ORCID,Vardiambasis Ioannis O.1,Nikolopoulos Christos D.1ORCID

Affiliation:

1. Department of Electronics Engineering, Hellenic Mediterranean University, 73133 Chania, Greece

Abstract

This article sums up and compares the most important techniques for magnetic sensing of ferromagnetic nanoparticles. In addition, the most well-known magnetic sensing instruments are presented, while the advantages and disadvantages of each instrument category are summarized. Finally, a measurement system based on fluxgate magnetometers is proposed for the magnetic characterization of a cobalt-based material applicable in the catalysis process. The authors conclude that this arrangement can provide ferromagnetic material sensing with the most advantages for this catalysis application. Indeed, as nanoparticle materials can be used in many applications, like catalysis, their properties and the phase of the catalyst should be known at any time. Moreover, as the industrial processes operate at a rapid pace, the need for simple, fast, and low-cost measurement systems that will also enable in vivo material characterization is rising. Consequently, this article aims to propose the best candidate magnetic sensing method as well as the best candidate instrument for every application based on the advantages and disadvantages of each sensor.

Funder

Public Investment Program of the Greek Ministry of Education and Religious Affairs

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3