Transfer Learning Based Fault Diagnosis with Missing Data Due to Multi-Rate Sampling

Author:

Chen Danmin,Yang Shuai,Zhou Funa

Abstract

Deep learning is an effective feature extraction method widely applied in fault diagnosis fields since it can extract fault features potentially involved in multi-sensor data. But different sensors equipped in the system may sample data at different sampling rates, which will inevitably result in a problem that a very small number of samples with a complete structure can be used for deep learning since the input of a deep neural network (DNN) is required to be a structurally complete sample. On the other hand, a large number of samples are required to ensure the efficiency of deep learning based fault diagnosis methods. To solve the problem that a structurally complete sample size is too small, this paper proposes a fault diagnosis framework of missing data based on transfer learning which makes full use of a large number of structurally incomplete samples. By designing suitable transfer learning mechanisms, extra useful fault features can be extracted to improve the accuracy of fault diagnosis based simply on structural complete samples. Thus, online fault diagnosis, as well as an offline learning scheme based on deep learning of multi-rate sampling data, can be developed. The efficiency of the proposed method is demonstrated by utilizing data collected from the QPZZ- II rotating machinery vibration experimental platform system.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transfer learning applications for autoencoder-based anomaly detection in wind turbines;Energy and AI;2024-09

2. Anomaly Detection Based on Data Super-Resolution in Industrial Cyber–Physical Systems With Multirate Sampling;IEEE Sensors Journal;2024-05-15

3. Connecting Autonomous Engineering Domains with the Shared Language of Deep Neural Networks;2024 2nd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of Things (AIMLA);2024-03-15

4. A Deep Transfer Learning-Based Network for Diagnosing Minor Faults in the Production of Wireless Chargers;Applied Sciences;2023-10-20

5. Rolling bearing cross-domain fault diagnosis based on transfer learning domain generalization;2023 4th International Conference on Computer Engineering and Intelligent Control (ICCEIC);2023-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3