A Deep Transfer Learning-Based Network for Diagnosing Minor Faults in the Production of Wireless Chargers

Author:

Wang Yuping1,Li Weidong123,Zhu Honghui1

Affiliation:

1. School of Transport and Logistics Engineering, Wuhan University of Technology, Wuhan 430070, China

2. Faculty of Engineering, Environment and Computing, Coventry University, Coventry CV1 5FB, UK

3. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200444, China

Abstract

Wireless charger production is critical to energy storage, and effective fault diagnosis of bearings and gears is essential to ensure wireless charging performance with high efficiency, high tolerance to misalignment, and thermal safety. As minor faults are usually difficult to detect, timely diagnosis and detection of minor faults can prevent the fault from worsening and ensure the safety of wireless charging systems. Diagnosing minor faults in bearings and gears with data is a useful but difficult task. To achieve a satisfactory diagnosis of minor faults in the production of wireless charging systems related to the mechanical system that produces wireless charging devices, such as robot arms, this paper proposes a deep learning network based on CNN and LSTM (DTLCL). The method uses deep learning network, model-based transfer learning and range adaptation technology. First, a deep neural network is built to extract significant fault features. Second, the deep transfer network is initialised using model-based transfer learning with a good starting point. Finally, range adaptation using the maximum mean discrepancy between the features learned from the source and target ranges is realised by a multi-layer adaptive technology. The effectiveness of the method was verified using actual measurement data. The training time is 19 s, and the accuracy exceeds 94.5%. The explanation results show that the proposed DTLCL method provides higher accuracy and robust identification of smaller errors compared to the current combination of integrated and single non-transmission models. Due to its data-driven nature, the DTLCL method could be used for fault diagnosis of bearings and gears, which would further promote the application process of wireless charging.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3