Prediction of Near-Wake Velocity in Laminar Flow over a Circular Cylinder Using Neural Networks with Instantaneous Wall Pressure Input

Author:

Yun Jinhyeok1ORCID,Lee Jungil1ORCID

Affiliation:

1. Department of Mechanical Engineering, Ajou University, Suwon 16499, Republic of Korea

Abstract

In the present study, to predict the transverse velocity field in the near-wake of laminar flow over a circular cylinder at the Reynolds numbers of 60 and 300, we construct neural networks with instantaneous wall pressures on the cylinder surface as the input variables. For the two-dimensional unsteady flow at Re=60, a fully connected neural network (FCNN) is considered. On the other hand, for a three-dimensional unsteady flow at Re=300 having spanwise variations, we employ two different convolutional neural networks based on an encoder–FCNN (CNN-F) or an encoder–decoder (CNN-D) structure. Numerical simulations are carried out for both Reynolds numbers to obtain instantaneous flow fields, from which the input and output datasets are generated for training these neural networks. At the Reynolds numbers considered, the neural networks constructed accurately predict the transverse velocity fields in the near-wake over the cylinder using the information of instantaneous wall pressures as the input variables. In addition, at Re=300, it is observed that CNN-D shows a better prediction ability than CNN-F.

Funder

Ministry of Education

Korea Ministry of Environment

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3