Systematic Review: Emotion Recognition Based on Electrophysiological Patterns for Emotion Regulation Detection

Author:

Duville Mathilde Marie1ORCID,Pérez Yeremi1ORCID,Hugues-Gudiño Rodrigo1,Naal-Ruiz Norberto E.1ORCID,Alonso-Valerdi Luz María1ORCID,Ibarra-Zarate David I.1ORCID

Affiliation:

1. Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico

Abstract

The electrophysiological basis of emotion regulation (ER) has gained increased attention since efficient emotion recognition and ER allow humans to develop high emotional intelligence. However, no methodological standardization has been established yet. Therefore, this paper aims to provide a critical systematic review to identify experimental methodologies that evoke emotions and record, analyze and link electrophysiological signals with emotional experience by statistics and artificial intelligence, and lastly, define a clear application of assessing emotion processing. A total of 42 articles were selected after a search based on six scientific browsers: Web of Science, EBSCO, PubMed, Scopus, ProQuest and ScienceDirect during the first semester of 2020. Studies were included if (1) electrophysiological signals recorded on human subjects were correlated with emotional recognition and/or regulation; (2) statistical models, machine or deep learning methods based on electrophysiological signals were used to analyze data. Studies were excluded if they met one or more of the following criteria: (1) emotions were not described in terms of continuous dimensions (valence and arousal) or by discrete variables, (2) a control group or neutral state was not implemented, and (3) results were not obtained from a previous experimental paradigm that aimed to elicit emotions. There was no distinction in the selection whether the participants presented a pathological or non-pathological condition, but the condition of subjects must have been efficiently detailed for the study to be included. The risk of bias was limited by extracting and organizing information on spreadsheets and participating in discussions between the authors. However, the data size selection, such as the sample size, was not considered, leading to bias in the validity of the analysis. This systematic review is presented as a consulting source to accelerate the development of neuroengineering-based systems to regulate the trajectory of emotional experiences early on.

Funder

Mexican National Council of Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3